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Abstract:

e surface chemistry and stoichiometry of p- and n-type
CdTe photoelectrodes treated with oxidizing and reducing etches
have been characterized by X-ray photoelectron and Auger
electron spectroscopies. The results of surface analysis have
been correlated with the photoelectrochemical and capacitance-
potential behavior of the photoelectrodes. Fo:idized& surfaces
are covered by a thin Tef/TeOz layer (or a thicker Te® layer,
if the etching procedure is slightly altered), resulting in
Fermi level pinning: a constant photovoltage is found for a
wide range of redox potentials and potential-independent space
charge layer capacitance obtains. ﬁneducedﬁksurfaces closely
resemble ion sputtered CdTe in chemical state and
stoichiometry, resulting in more nearly fideal&\behavior: the
semiconductor/electrolyte interface is rectifying in the dark:
capacitance-potential behavior follows the Mott-Schottky
equation near flat band conditiopns: and photovoltage varies
with redox potential, from O to\Q;.7 v fof p-CdTe. -ﬁl\c‘?\i(~x
Prepared for publication in the Journal of vacuuﬁfgéience and - ‘
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Introduction

Several recent reports have revegled a relationship between
CdTe surface composition and the photovoltage (or barrier height)
obtained from CdTe/metal and CdTe/electrolyte junctions.l-5
Vacuum cleavage, 3-6 cleavage in air,3-9 and polishing followed by
chemical etchingl=3:7-21 are the three commonly used methods of
crystal surface preparation. The two 1attet methods generally
result in non-stoichiometric, oxidized surfacesl:2,4.7-13 that are
contaminated with Te® and/or TeOj prior to semiconductor/metal or
electrolyte junction formation.  An only recently explored
exception to the general rule of oxidized CdTe surfaces is
obtained by treating CdTe with a chemical reducing agent, such as
dithionite,1:2 §2042~, or hydrazine, NaH4.22 Oxidized surfaces
exhibit interfacial electronic properties characteristic of Fermi
level pinning:23,24 barrier heights, ¢g, and photovoltages, Ey,
are nearly independent of the work function, ¢p, of the contacting
metall4 15 or the redox potential, Eredox. ©Of the electrolytic
solution.l/2 In contrast, ¢g's obtained from vacuum cleaved or
reductively etched CdTe depend strongly on ¢y or Eredox and are
regarded as more nearly idca1.23&25

In this work we detail experiments using XPS and Auger
spectroscopy that give a more complete understanding of the
relationship between surface composition and the characteristics
of the semiconductor/electrolyte junction. We correlate surface
composition and the potential dependence of the interfacial

capacitance? of oxidatively and reductively etched p- and n-CdTe

in contact with CH3CN/electrolyte. Further, we correlate
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photovoltage vs. redox potentialicz with surface composition of
n- and p~CdTe. Measurements made previously on S0 42- reduced
CdTe have now been extended to NoH 4 reduced CdTe.

Experimental

Crystal Preparation and Etching Procedures. Single crystals of

p- and n-CdTe (Cleveland Crystals, Cleveland, OH) were polished
to a mirror finish with 0.3 uym alumina. Crystals were then
cleaned for 1 min in boiling 5 M KOH. The dichromate oxidizing
etch was a 30 s immersion in 4 g KCr207/10 ml HNO3/20 ml H20.
The 15% HNO3 etch lasted 30 min. Prior to the reducing etches,
the crystal surface was etched in HNO3/Cr2072-. The dithionite
etch was a 3 min immersion in boiling 0.6 M NasS504/2.5 M NaOH.
The hydrazine etch was either 5 min in 30% NoH4, pH 14, at ~50°C
or ~15 min in 95% N2H4 at 25°C. After thorough rinsing, crystals
were stored in an evacuated tube until surface analysis.

Surface Spectroscopy and Photoelectrochemical Methods. XPS and

AES data were recorded on PDP 11/ 04-controlled Physical Elec-
tronics (Perkin Elmer) Model 548 and Model 590 spectrometers,
respectively. Full details of instrumentation, spectrometer
calibration, and data manipulation are given elsewhere.2:26,27
Samples were grounded to the spectrometer. A full description of
the preparation of p- and n-CdTe electrodes and details of the
electrochemical and capacitance-voltage measurement techniques are
published elsewhere.l:/2

Results and Discussion

1. X-Ray Photoelectron Spectroscopy. To identify the chemical

state of the CAdTe surface, precise core electron binding energies,

260.1 eV, were measured for the C4d 34, Te 3d, and C 1ls levels.
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Samples examined included oxidized CdTe etched with either HNOj/
Cr072- or 15% HNO3:; reduced CATe etched with either OH-/S2042- or
N2H4: and Ar ion sputtered CdTe. Because Cd and Te have similar
atomic weights preferential sputtering effects are expected to be
minimal: 28,29 this has been confirmed experimentally.l3 For a
given sufface treatment, no significant or systematic differences
between the spectra of n- and p-type CdTe were observed. To
identify surface impurities and determine overall stoichiometry,

a low resolution survey scan was obtained for each sample. In the
following discussion, only the 3dg/; binding energies of the Cd
and Te 3d doublets are cited because the spin-orbit splitting is
independent of oxidiation state, see Table I.

a. Chemical State. Figure 1 and Table I summarize the XPS

.results for oxidized, feduced, a?d ion sputtered CdTe. There is
little difference in the Cd 3d binding energies for the various
surface treatments, consistent with the absence of significant
changes in the Cd oxidation state.8 In contrast, the Te 3d
binding energies show large differences. 1Ion sputtered CdTe has a
single Te 3ds/ peak at 572.5 eV, characteristic of Te2-. Dithio-
nite or hydrazine reduced CdTe has a very similar Te 3d region,
with the addition in some cases of a weak line at ~3.5 eV higher
binding energy than the Te2- peak. This high energy peak, with an
average intensity only 4% of that of the Te2- line, is a result of
limited air oxidation of the CdTe surface, and the Te 3dg/2
binding energy, ~576 eV, is characteristic of Te02.31 A few of
the dithionite reduced CdTe surfaces showed slight asymmetry on

the high binding energy side of the Te2- peak, due to the presence
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;&E of a small amount of Te®’. Thus, both reducing etches yield XPS
gig binding energies which closely resemble bulk (ion sputtered) CdTe.
{\: The Te 3d spectra of oxidized CdTe are quite different from
%gg those of reduced and ion sputtered samples. The dichromate etch
'ié results in the spectrum shown in Figure 1. The high energy Te
h; 3ds/2 line, at 576.2 eV, is due to TeOy formed during the oxi-
Eés dizing etch and/or air oxidation of the surface following the
;i: etch. Allowing the dichromate oxidized samples to sit in air for
;;. ~2 weeks noticeably enhances the TeO3 signals. The lower energy
fg Te 3ds5/, peak, at 573.0 eV, is midway between the binding ener-
;?‘ gies measured for Te2- and Te® This peak is quite broad (FWHM ~1.8
;;ﬁ eV) compared to the width of the 3d lines for sputtered CdTe (1.56
}f eV) and sputtered Te® (1.3 eV). Together, these data suggest that
fﬂ both Te® and Te2- are present on the dichromate oxidized surface,
2;5 with the Te® being part of a thin layer of oxidation products left
fg; by the etch and the Te2- belonging to bulk CdTe. Auger data sup-
:?' port this assignment of Te2- and Te®, vide infra. CdTe oxidized
igg in 15% HNO3 yields yet a different Te 3d spectrum. There is only
Eé; a single Te 3dg/2 peak, but the binding energy, 573.3 eV, is
;3; characteristic of Te®. In fact, there is no Cd signal visible at
}ig‘ all for such samples which, according to Auger depth profile
?Yﬁ analysis, are covered by a fairly thick Te® layer.l12,33,34
‘¥%; The two Te 3d5/2 lines found for air oxidized elemental Te,
e Table I, indicate the presence of both Te®’ and an overlayer of
TeOz. Sputtered elemental Te has only a single Te 3ds5/2 line,
;;. giving the binding energy for Te® of 573.5 eV.

b. Stoichiometry. The Te:Cd ratio obtained from sputtered

CdTe using integrated 3d peak areas and correcting for atomic
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p..v. sensitivity factors32 is 1.0 : 0.1 (Table II) supporting the

‘1} conclusion (vide supra) that preferential sputtering is not a

{_\ problem. For dithionite or hydrazine reduced CdTe, the ratio is
:ib 1.0 £ 0.3, with the rather large standard deviation an indication
‘\'._I

;Sﬁ that the surface is not always precisely stoichiometric. The

overall Te:Cd ratio of 1.6 for dichromate oxidized CdTe indicates
o a substantial enrichment of the surface in Te relative to the
bulk, consistent with the hypothesis that the dichromate etch

. leaves oxidiation products of Te on the surface. This Te:Cd
ratio, though greater than unity, is far less than that obtained
by other workers using the same etch.l.ll They found that the
dichromate etch left a contaminant layer so thick that the Cd
signal was entirely obscured. A possible explanation for this
behavior is presented in the next section.

)
N 2. Auger Spectroscopy and Depth Profile Analysis. AES gives

results for oxidized and reduced samples which are in gqualitative
agreement with the results from XPS. Figure 2a shows the Auger

spectrum of dichromate oxidized CdTe. The Te/Cd ratios determined
ici from AES for oxidized samples are significantly larger than those

found by XPS (Table II), consistent with the difference in elec-

Q T
',:‘( "', .‘..‘.

tron escape depths. For the Cd MNN Auger line, the kinetic energy

-

:i (KE) of electrons is ~380 eV, giving an escape depth33 of =~7A&; the
iif ca 3d5/2 line, excited by Mg Ka irradiation, gives electrons with
géi KE ~850 eV, for an escape depth of ~15 A. Thus, Auger data

;Ei substantiate the hypothesis of bulk CdTe covered by a thin (<304)
"; Te®/TeO, layer. A depth profile of dichromate etched CdTe, Figure
E; 2b, shows that O extends nearly into the bulk, though the relative
;ia amount of O decreases with sputtering time, suggesting the
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Te®/TeO3 layer observed by XPS becomes richer in Te® as bulk CdTe

is approached. This profile also shows that the surface

E!! contaminant layer is relatively thin. The Cd and Te signals reach
%ﬁ; their bulk values in <1 min at a sputtering current density of -~25
5 wA/cm2 at 2 kV.

ij? If a short time, ~30 s, elapses between the Cr2072‘/HN03 etch
.‘:\.'

) and the H20 rinse, the CdTe surface becomes covered with Te°®,
Figure 2a. An Auger depth profile of such a sample, Figure 2c,
Lo reveals that little O is present in this layer and that it is
) fairly thick relative to the Te®/TeO, layer formed on "immediately
M rinsed" dichromate etched CdTe, Figure 2b. Presumably, this is
"ﬁ the explanation for the difference in thickness of the Te®/TeOj
N layer found in the present study compared to that found by
others.l.1l1 The 15% HNO3 etch gives a thick, dull-looking Te®
layer, even if the crystal is rinsed immediately after etching.
With the exception of S and C impurity peaks, the Auger spec-
N trum of dithionite reduced CdTe closely resembles that of Ar ion
-53 sputtered CdTe, Figure 2a. The S peak is presumably a result of
: impurities left behind by the dithionite etch. The sulfur does
» not, however, play an important role in the interfacial energetics
?;j of the reduced CdTe surfaces; an oxidized CdTe electrode may be

electrochemically reduced to give the same differential capaci-

tance vs. potential curve as obtained for a sample reduced with

the dithionite etch. 1In addition, Auger spectroscopy reveals that

»
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g¢$ NoH4 reduction of CdTe yields a nearly sulfur-free surface closely
e
@z resembling that of ion sputtered CdTe. Importantly, the photo-
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reduced p- and n-CdTe is quite similar to that obtained as a

result of dithionite reduction.

3. Photoelectrochemical and Capacitance-Voltage Measurements.

Scheme I summarizes the situation for oxidatively etched p- and
n-CdTe. Oxidized n-CdTe yields photovoltages of 500-600 mV for

redox potentials between +0.7 and -1.7 V vs. SCE, while p~CdTe

yields little or no photovoltage (Ey < 100 mV) for Eredox between
}

(=)

n=CdTe p-CdTe

Potentiol , V vs. Reference

v
(+)

Scheme I. Interfacial energetics for oxidativelx etched p- and
n-CdTe for a range of solution redox potentials. Potential
drop across the Helmholtz double layer (not shown) accounts for ‘
the apparent shift in location of the valence and conduction

bands, relative to an external reference potential, as the redox
potential is varied.

+0.2 and ~-1.7 V vs. SCE. This suggests that the Fermi level of
n-CdTe is pinned to a value at least ~0.6 V below the conduction
band. For oxidized p-CdTe, the Fermi level is apparently pinned
quite near the valence band edge. Capacitance-voltage measure-
ments in CH3CN/electrolyte (no redox couple) for oxidized CdTe

reveal nearly potential-independent space charge layer capacitance

.........
......................
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(~130 nF/cm2 for n-type; ~50 nF/cm2 for p-type), implying that the
band bending is potential-independent and thus supporting the case
made above for Fermi level pinning.2

When CdTe is reductively etched, either with dithionite or
hydrazine, the interfacial energetics represented by Scheme II
apply. In the case of n-CdTe, when Eregox is negative of -1.2 V
vs. SCE, the approximate location of the conduction band edge,
ohmic contact occurs between solution species and the semi-
conductor. But for Eregqox between -1.1 and +0.1 V vs. SCE, an
approximately linear relationship between Ey and Eredox holds,
with AEy/AEredox = 0.6. For reduced p-CdTe, ohmic contact exists
for redox potentials positive of the valence band edge, ~0.2 V
vs. SCE, while Ey varies from 0 to ~0.65 V for Eredox between
-0.3 and -1.8 V vs. SCE, with a maximum rate of change,
AEy/ AEpedox: ©f 0.6. Capacitance-voltage measurements also
suggest a more ideal interface for reduced CdTe, and linear
Mott-Schottky plots are obtained. From the Mott-Schottky plots,
values of the flat band potentia} and the donor (n-type, 2 x 1017
cm-3) and acceptor (p-type, 2.5 ; 1015 cm=3) densities are
calculated. The Epp values and donor/acceptor densities allow
calculation of the location of the valence and conduction band
edges, yielding values of ~-0.2 and -1.5 V vs. SCE, respectively.

Conclusions

Surface spectroscopy reveals that the Fermi level pinned
behavior characteristic of oxidized p- and n-CdTe is a result of

oxidation products left on the surface after etching.

Specifically, Te®, a small band gap semiconductor, Eg = 0.35

ev,33.36 j5 found on the surface of oxidized samples. The Te®

Pt 4 Wil S 0t e i adh A S A A A 4 TS T e T T e T T e




€
50'1"\0:-:.'«.::.-‘-- = €, /
E
R T (P LY a A

E"""‘ --Eroton-|-=~== E' 'ECI Eco —

~—1Evs Evy! /Ev. Eve /
; Eve

€= == L€ regen-] ~~z=Ey

'EV.

Potenticl, V vs. Reference

{
(+)

Scheme II. Interfacial energetics for reductively etched,
stoichiometric p~ and n-CdTe.2 Note that the extent of band
bending (and thus the barrier height and photovoltage) changes
with redox potential. For very positive redox potentials at
n-CdTe or very negative redox potentials at p-CdTe, the amount of
band bending reaches its maximum, hence additional potential drop
is across the Helmholtz layer, cf. Scheme I.

overlayer has a large work function23 and would be expected to
give a larger barrier on n- than on p-CdTe. This is entirely
consistent with the reasonably large photovoltage obtained for
surface oxidized n-CdTe and the near-zero photovoltage obtained
for surface-oxidized p-CdTe in electrolyte/redox couple solutions.
That Fermi level pinning is a result of the surface treatment is
F illustrated by the results from the reducing etches, namely the
nearly ideal behavior of reduced p- and n-CdTe coupled with the
close resemblance of the surface composition to clean CdTe.
Because most solid state measurements have been made on air

cleaved or oxidatively etched CdTe crystals, it is reasonable to

................................................
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conclude that the nearly constant barrier heights found in these
studies result from the oxidation of the CdTe surface. Results
from metal deposition on vacuum cleaved CdTe and from electro-
chemical studies on reduced CdTe support this conclusion.
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Figure Captions

Figure 1. X-ray photoelectron spectra of the Te 3d region
showing, from top: Ar ion sputtered CdTe; S,042-/0H- reduced
CdTe; NoH4 reduced CdTe; Cr2072-/HNOj oxidized CdTe: and 15% HNOj3
oxidized CdTe.

Figure 2. (a) Auger spectra of CdTe showing, from top:
Cr,072-/HNO3 oxidized CATe, rinsed immediately after etching:
Crzozz-/HNO3 oxidized CAdTe, rinsed 30 s after etching:
8§2044~/0OH~ reduced CdTe; and Ar ion sputtered CadTe. (b) Auger
depth profile of Cr;072-/HNO3 oxidized CdTe, rinsed immediately
after etching. (c) Auger depth profile of Cr,092-/HNO3 oxidized
CdTe, rinsed 30 s after etching. The Ar ion current densities
are the same for (b) and (c).
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§ Table 1I1. Comparison of Stoichiometry Determined by XPS and
AES for Reduced, Oxidized, and Ion Sputtered CdTe.

Relative Intensitya3.b

; cd Te (o]
N Sample
i XPS, AES XPS AES XPS
X Ion Sputtered 1.0 1.0(1) 1.0 0.0
Sy CdTe
NaOH/S202- 1.0 1.0(2) 0.8(3) 1.5(7)
p Reduced CAdTe
I N2H4 1.0 1.0(3) 1.1(2) 3.5(4)
}; Reduced CdTe
HNO3/Cr2072~ 1.0 1.6(3) 3.5(6) 4.0(6)
Oxidized CAdTe
15% HNOj3 0.0 1.0 1.0 1.4(4)
Oxidized CdTe
Oxidized ——— 1.0 ——— 1.9(5)

Elemental Te

8Intensity for XPS data is taken from survey scams,
100 eV pass energy, by. integrating the Cd 3dg/3, Te
3dg/2, and 0 1ls lines and corregting for the
redpective sensitivity factors.32 The XPS
intensities include all oxidiation states of each
element, i.e. Te2-, Te®, and TeOy are all included
in the Te intensity.

DPor AES data, relative intensity of Te to Cd was
determined experimentally for ion sputtered CdTe
using the MNN Auger lines. (Preferential
sput?cring effects are unimportant, see ref. 8 and
text).

.........................
.......................
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XPS of CdTe, Te 3d Region l 5/2
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